UDL Implementation in the Math Classroom: Practical Applications for Monday’s Lessons

Amy McDonald, M.A.
Arizona Department of Education,
Exceptional Student Services
Tucson, AZ, USA
Amy.McDonald@azed.gov

Harold Campbell, M.A.
Arizona Department of Education,
Exceptional Student Services
Tucson, AZ, USA
Harold.Campbell@azed.gov

Abstract
It is relatively simple to articulate the three broad core principles of Universal Design for Learning to the PK–12 mathematics educator: Provide multiple means of engagement, multiple means of representation, and multiple means of action and expression for all students on a regular basis. Application of these principles, however, is arguably more difficult, particularly when one attends to the detailed guidelines they encompass or attempts to focus exclusively on the teaching of a specific content area. Educators and their contexts are as unique as fingerprints, and the idea of differentiating instruction in UDL-inspired ways on a consistent basis in every aspect of teaching within the confines of those unique contexts can be quite challenging. In this poster session, the presenters will provide practical examples to educators attempting to apply core UDL tenets to their teaching of mathematics at all levels of PK–12 education. The emphasis will be on how the flexible differentiation that UDL generates can help all learners, especially those struggling or receiving services for disabilities, gain the access to quality mathematics learning at high levels that they may otherwise be denied.

Keywords
Implementation; Application; Mathematics; PK–12

INTRODUCTION
There are three broad guidelines of Universal Design for Learning (UDL) that are of utmost importance to the intentional PK–12 educator. In whatever order they are addressed, these guidelines inspire regular flexibility and creativity in terms of the educator’s provision of multiple means of:

Engagement,

Representation, and

Action and Expression.

Within the context of teaching mathematics, there are some very explicit research-based practices that are consistent with the UDL principles and guidelines. This poster session is an exploration of key strategies and practices that will help the motivated mathematics educator at any level begin to regularly and meaningfully apply UDL principles and guidelines in practical ways.

MULTIPLE MEANS OF ENGAGEMENT
To inspire purposeful and motivated learners, the intentional math educator needs to attend to the affective networks of the brain (the “why” of learning). To do so, the educator can provide options for:

Recruiting interest by using real-world contexts for math tasks, incorporating student-motivated and generated problems, and providing choice;

Sustaining effort and persistence by incorporating effective group work (i.e., complex instruction), flexible groupings, rich and accessible mathematical tasks (i.e., low floor, high ceiling), formative feedback, and physical activity, all while teaching a growth mindset; and

Self-regulation by teaching and modeling productive mindsets (i.e., encouraging risk-taking, celebrating mistakes) and meaningful reflective practices (inspiring metacognitive awareness).

MULTIPLE MEANS OF REPRESENTATION
To inspire resourceful and knowledgeable learners, the intentional math educator needs to attend to the recognition networks of the brain (the “what” of learning). To do so, the educator can provide options for:

Perception providing a variety of customized displays, presentations, and experiences of information and content that engage all of the senses, thus ensuring accessibility of content to all learners in multiple contexts;

Language, mathematical expressions, and symbols through a continual focus on the CPA continuum (concrete, pictorial, abstract) and the creation of a vocabulary-rich environment using multiple media; and

Comprehension through intentional focus on patterns, big ideas, the eight Standards for Mathematical Practices, process, alternate algorithms and paths, and the CPA continuum.

MULTIPLE MEANS OF ACTION AND EXPRESSION
To inspire strategic and self-directed learners, the intentional math educator needs to attend to the strategic networks of the brain (the “how” of learning). To do so, the educator can provide options for:

Physical action constantly, whether through active brain breaks, intentional movement from one place to another,
acting out of content and vocabulary, or the use of various assistive technologies;

Expression and communication through the use of flexible and intentional groupings, tiered assignments, authentic and alternate assessments, student-generated and selected assignments, and a variety of media and tools for students to demonstrate their learning; and

Executive functions through regular focus on goals and purpose, teaching and celebrating each of the eight Standards for Mathematical Practice, constant reflection on strategies and tools employed, and involving students in the process of reflecting on meaningful formative assessments and feedback.

RESOURCES

Attendees of the poster session will be provided a handout with links to digital resources differentiated by grade band (PK, K–2, 3–5, 6–8, 9–12), as well as to the video being shown during the session.

REFERENCES

